Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Plant Biol ; 23(1): 510, 2023 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-37875807

RESUMO

BACKGROUND: Non-target site resistance (NTSR) to herbicides is a polygenic trait that threatens the chemical control of agricultural weeds. NTSR involves differential regulation of plant secondary metabolism pathways, but its precise genetic determinisms remain fairly unclear. Full-transcriptome sequencing had previously been implemented to identify NTSR genes. However, this approach had generally been applied to a single weed population, limiting our insight into the diversity of NTSR mechanisms. Here, we sought to explore the diversity of NTSR mechanisms in common ragweed (Ambrosia artemisiifolia L.) by investigating six field populations from different French regions where NTSR to acetolactate-synthase-inhibiting herbicides had evolved. RESULTS: A de novo transcriptome assembly (51,242 contigs, 80.2% completeness) was generated as a reference to seek genes differentially expressed between sensitive and resistant plants from the six populations. Overall, 4,609 constitutively differentially expressed genes were identified, of which none were common to all populations, and only 197 were shared by several populations. Similarly, population-specific transcriptomic response was observed when investigating early herbicide response. Gene ontology enrichment analysis highlighted the involvement of stress response and regulatory pathways, before and after treatment. The expression of 121 candidate constitutive NTSR genes including CYP71, CYP72, CYP94, oxidoreductase, ABC transporters, gluco and glycosyltransferases was measured in 220 phenotyped plants. Differential expression was validated in at least one ragweed population for 28 candidate genes. We investigated whether expression patterns at some combinations of candidate genes could predict phenotype. Within populations, prediction accuracy decreased when applied to an additional, independent plant sampling. Overall, a wide variety of genes linked to NTSR was identified within and among ragweed populations, of which only a subset was captured in our experiments. CONCLUSION: Our results highlight the complexity and the diversity of NTSR mechanisms that can evolve in a weed species in response to herbicide selective pressure. They strongly point to a non-redundant, population-specific evolution of NTSR to ALS inhibitors in ragweed. It also alerts on the potential of common ragweed for rapid adaptation to drastic environmental or human-driven selective pressures.


Assuntos
Acetolactato Sintase , Herbicidas , Humanos , Ambrosia/genética , Herbicidas/farmacologia , Transcriptoma , Resistência a Herbicidas/genética
2.
Ecol Evol ; 13(9): e10529, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37706161

RESUMO

Branched broomrape, Phelipanche ramosa (L.) Pomel, is a globally distributed parasitic weed of economic importance. In Europe, where it is native, it can infest several crops, notably tomato, tobacco, and hemp. In western France, it has recently adapted to a new host crop, oilseed rape, causing substantial damage. The aim of this study was to investigate the evolutionary relationships and genetic differentiation among P. ramosa populations infesting different hosts. We collected 1611 P. ramosa samples from 109 fields cultivated with six different crops (oilseed rape, tobacco, hemp, tomato, lentil, and celery) and distributed among six European countries. All samples were genotyped for ten microsatellite loci and a subset of samples was sequenced for two nuclear genes and two chloroplast genes. Genetic differentiation among populations was high (F ST = 0.807) and mainly driven by differentiation among different host crops, with no significant geographic structure. Genetic structure analysis identified up to seven biologically meaningful clusters that matched with host crops of origin. Reconstructed networks of sequence haplotypes and multilocus SSR genotypes showed a large genetic divergence between samples collected on oilseed rape and samples collected on other crops. The phylogeny inferred from DNA sequences placed samples collected from oilseed rape as a basal lineage. Approximate Bayesian Computations were used to compare different evolutionary scenarios of divergence among the three main genetic clusters, associated, respectively, with oilseed rape, tobacco, and hemp as host crops. The best-supported scenario indicated that P. ramosa infesting oilseed rape derived recently from an ancient, unknown lineage. Our results suggest that a more complete description of the genetic diversity of P. ramosa is still needed to uncover the likely source of the recent adaptation to oilseed rape and to anticipate future new host shifts.

3.
Sci Rep ; 13(1): 3736, 2023 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-36878947

RESUMO

The perennial western ragweed (Ambrosia psilostachya DC.) arrived from North America to Europe in the late nineteenth century and behaves invasive in its non-native range. Due to its efficient vegetative propagation via root suckers, A. psilostachya got naturalized in major parts of Europe forming extensive populations in Mediterranean coastal areas. The invasion history, the spreading process, the relationships among the populations as well as population structuring is not yet explored. This paper aims to give first insights into the population genetics of A. psilostachya in its non-native European range based on 60 sampled populations and 15 Simple Sequence Repeats (SSR). By AMOVA analysis we detected 10.4% of genetic variation occurring among (pre-defined) regions. These regions represent important harbors for trading goods from America to Europe that might have served as source for founder populations. Bayesian Clustering revealed that spatial distribution of genetic variation of populations is best explained by six groups, mainly corresponding to regions around important harbors. As northern populations show high degrees of clonality and lowest levels of within-population genetic diversity (mean Ho = 0.40 ± 0.09), they could preserve the initial genetic variation levels by long-lived clonal genets. In Mediterranean populations A. psilostachya expanded to millions of shoots. Some of those were obviously spread by sea current along the coast to new sites, where they initiated populations characterized by a lower genetic diversity. For the future, the invasion history in Europe might get clearer after consideration of North American source populations of western ragweed.


Assuntos
Ambrosia , Asteraceae , Ambrosia/genética , Teorema de Bayes , Europa (Continente) , Análise por Conglomerados
4.
Trends Plant Sci ; 28(1): 31-42, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36114125

RESUMO

Interactions among plants have been long recognized as a major force driving plant community dynamics and crop yield. Surprisingly, our knowledge of the ecological genetics associated with variation of plant-plant interactions remains limited. In this opinion article by scientists from complementary disciplines, the international PLANTCOM network identified four timely questions to foster a better understanding of the mechanisms mediating plant assemblages. We propose that by identifying the key relationships among phenotypic traits involved in plant-plant interactions and the underlying adaptive genetic and molecular pathways, while considering environmental fluctuations at diverse spatial and time scales, we can improve predictions of genotype-by-genotype-by-environment interactions and modeling of productive and stable plant assemblages in wild habitats and crop fields.


Assuntos
Ecossistema , Plantas , Genótipo , Fenótipo , Plantas/genética
5.
Plant Sci ; 317: 111202, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35193749

RESUMO

Assessing weed capacity to evolve herbicide resistance before resistance occurs in the field is of major interest for chemical weed control. We used herbicide selection followed by controlled crosses to provoke accelerated evolution of resistance to imazamox (imidazolinones) and tribenuron (sulfonyurea), two acetolactate-synthase (ALS) inhibitors targeting Ambrosia artemisiifolia. In natural populations with no herbicide application records, some plants were initially resistant to metsulfuron (sulfonylurea), a cereal herbicide. Non-target-site-based resistance (NTSR) to metsulfuron was substantially increased from these plants within two generations. NTSR to imazamox and/or tribenuron emerged in metsulfuron-selected G1 progenies and was strongly reinforced in G2 progenies selected by imazamox or tribenuron. NTSR to the herbicides assayed was endowed by partly overlapping and partly specific pathways. Herbicide sensitivity bioassays conducted over 62 ALS-inhibitor-sprayed fields identified emerging resistance to imazamox and/or tribenuron in 14 A. artemisiifolia populations. Only NTSR was detected in 13 of these populations. In the last population, NTSR was present together with a mutant, herbicide-resistant ALS allele bearing an Ala-205-Thr substitution. NTSR was thus by far the predominant type of resistance to ALS inhibitors in France. This confirmed accelerated selection results and demonstrated the relevance of this approach to anticipate resistance evolution in a dicotyledonous weed.


Assuntos
Acetolactato Sintase , Ambrosia/genética , Evolução Molecular , Resistência a Herbicidas , Herbicidas , Acetolactato Sintase/antagonistas & inibidores , Alérgenos , Resistência a Herbicidas/genética , Herbicidas/farmacologia , Plantas Daninhas/genética
6.
Sci Rep ; 11(1): 19904, 2021 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-34620913

RESUMO

Ambrosia artemisiifolia L. (common ragweed) is a globally invasive, allergenic, troublesome arable weed. ALS-inhibiting herbicides are broadly used in Europe to control ragweed in agricultural fields. Recently, ineffective treatments were reported in France. Target site resistance (TSR), the only resistance mechanism described so far for ragweed, was sought using high-throughput genotyping-by-sequencing in 213 field populations randomly sampled based on ragweed presence. Additionally, non-target site resistance (NTSR) was sought and its prevalence compared with that of TSR in 43 additional field populations where ALS inhibitor failure was reported, using herbicide sensitivity bioassay coupled with ALS gene Sanger sequencing. Resistance was identified in 46 populations and multiple, independent resistance evolution demonstrated across France. We revealed an unsuspected diversity of ALS alleles underlying resistance (9 amino-acid substitutions involved in TSR detected across 24 populations). Remarkably, NTSR was ragweed major type of resistance to ALS inhibitors. NTSR was present in 70.5% of the resistant plants and 74.1% of the fields harbouring resistance. A variety of NTSR mechanisms endowing different resistance patterns evolved across populations. Our study provides novel data on ragweed resistance to herbicides, and emphasises that local resistance management is as important as mitigating gene flow from populations where resistance has arisen.


Assuntos
Acetolactato Sintase/genética , Ambrosia/efeitos dos fármacos , Ambrosia/genética , Resistência a Herbicidas , Herbicidas/farmacologia , Acetolactato Sintase/metabolismo , Alelos , Ambrosia/classificação , Ambrosia/enzimologia , Substituição de Aminoácidos , França , Genótipo , Geografia , Mutação , Filogenia , Plantas Daninhas
7.
Proc Natl Acad Sci U S A ; 117(41): 25618-25627, 2020 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-32989136

RESUMO

Global trade has considerably accelerated biological invasions. The annual tropical teosintes, the closest wild relatives of maize, were recently reported as new agricultural weeds in two European countries, Spain and France. Their prompt settlement under climatic conditions differing drastically from that of their native range indicates rapid genetic evolution. We performed a phenotypic comparison of French and Mexican teosintes under European conditions and showed that only the former could complete their life cycle during maize cropping season. To test the hypothesis that crop-to-wild introgression triggered such rapid adaptation, we used single nucleotide polymorphisms to characterize patterns of genetic variation in French, Spanish, and Mexican teosintes as well as in maize germplasm. We showed that both Spanish and French teosintes originated from Zea mays ssp. mexicana race "Chalco," a weedy teosinte from the Mexican highlands. However, introduced teosintes differed markedly from their Mexican source by elevated levels of genetic introgression from the high latitude Dent maize grown in Europe. We identified a clear signature of divergent selection in a region of chromosome 8 introgressed from maize and encompassing ZCN8, a major flowering time gene associated with adaptation to high latitudes. Moreover, herbicide assays and sequencing revealed that French teosintes have acquired herbicide resistance via the introgression of a mutant herbicide-target gene (ACC1) present in herbicide-resistant maize cultivars. Altogether, our results demonstrate that adaptive crop-to-wild introgression has triggered both rapid adaptation to a new climatic niche and acquisition of herbicide resistance, thereby fostering the establishment of an emerging noxious weed.


Assuntos
Adaptação Biológica/genética , Introgressão Genética/genética , Plantas Daninhas/genética , Zea mays/genética , Adaptação Biológica/fisiologia , Europa (Continente) , Evolução Molecular , Introgressão Genética/fisiologia , Resistência a Herbicidas/genética , Resistência a Herbicidas/fisiologia , Herbicidas/farmacologia , Plantas Daninhas/efeitos dos fármacos , Plantas Daninhas/fisiologia , Zea mays/efeitos dos fármacos , Zea mays/fisiologia
8.
Pest Manag Sci ; 76(2): 543-552, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31270924

RESUMO

BACKGROUND: Next Generation Sequencing (NGS) technologies offer tremendous possibilities for high-throughput pesticide resistance diagnosis via massive genotyping-by-sequencing. Herein, we used Illumina sequencing combined with a simple, non-commercial bioinformatics pipe-line to seek mutations involved in herbicide resistance in two weeds. RESULTS: DNA was extracted from 96 pools of 50 plants for each species. Three amplicons encompassing 15 ALS (acetolactate-synthase) codons crucial for herbicide resistance were amplified from each DNA extract. Above 18 and 20 million quality 250-nucleotide sequence reads were obtained for groundsel (Senecio vulgaris, tetraploid) and ragweed (Ambrosia artemisiifolia, diploid), respectively. Herbicide resistance-endowing mutations were identified in 45 groundsel and in eight ragweed field populations. The mutations detected and their frequencies assessed by NGS were checked by individual plant genotyping or Sanger sequencing. NGS results were fully confirmed, except in three instances out of 12 where mutations present at a frequency of 1% were detected below the threshold set for reliable mutation detection. CONCLUSION: Analyzing 9600 plants requested 192 DNA extractions followed by 1728 PCRs and two Illumina runs. Equivalent results obtained by individual analysis would have necessitated 9600 individual DNA extractions followed by 216 000 genotyping PCRs, or by 121 500 PCRs and 40 500 Sanger sequence runs. This clearly demonstrates the interest and power of NGS-based detection of pesticide resistance from pools of individuals for diagnosing resistance in massive numbers of individuals. © 2019 Society of Chemical Industry.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala , Acetolactato Sintase , Resistência a Herbicidas , Humanos , Mutação , Praguicidas , Plantas Daninhas
9.
Mol Ecol Resour ; 19(1): 296-305, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30362291

RESUMO

Metapop is a stochastic individual-based simulation program. It uses quantitative genetics theory to produce an explicit description of the typical life cycle of monoecious and hermaphroditic plant species. Genome structure, the relationship between genotype and phenotype, and the effects of landscape heterogeneity on each individual can be finely parameterized by the user. Unlike most existing simulation packages, Metapop can simulate phenotypic plasticity, which may have a genetic component, and assortative mating, two important features of tree species. Each simulation is parameterized through text files, and raw data are generated recurrently, describing the allelic state of each quantitative trait locus involved in phenotypic variability. The data can be generated in Genepop or Fstat format, and may thus be analysed with other existing packages. Metapop also automatically computes a range of populations statistics, enabling the user to monitor evolutionary dynamics directly, from gene to metapopulation level.


Assuntos
Biologia Computacional/métodos , Genética Populacional/métodos , Genótipo , Fenótipo , Software , Árvores/crescimento & desenvolvimento , Simulação por Computador , Análise Espaço-Temporal , Árvores/classificação , Árvores/genética
10.
Nat Ecol Evol ; 2(1): 194, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29208992

RESUMO

In the version of this Article previously published, there was a typographical error ('4' instead of '2') in the equations relating F ST and effective population size (N e) in the Methods section 'Genome-wide scan for selection based on temporal differentiation'. The correct equations are given below.[Formula: see text] [Formula: see text].

11.
Nat Ecol Evol ; 1(10): 1551-1561, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29185515

RESUMO

Rapid phenotypic evolution of quantitative traits can occur within years, but its underlying genetic architecture remains uncharacterized. Here we test the theoretical prediction that genes with intermediate pleiotropy drive adaptive evolution in nature. Through a resurrection experiment, we grew Arabidopsis thaliana accessions collected across an 8-year period in six micro-habitats representative of that local population. We then used genome-wide association mapping to identify the single-nucleotide polymorphisms (SNPs) associated with evolved and unevolved traits in each micro-habitat. Finally, we performed a selection scan by testing for temporal differentiation in these SNPs. Phenotypic evolution was consistent across micro-habitats, but its associated genetic bases were largely distinct. Adaptive evolutionary change was most strongly driven by a small number of quantitative trait loci (QTLs) with intermediate degrees of pleiotropy; this pleiotropy was synergistic with the per-trait effect size of the SNPs, increasing with the degree of pleiotropy. In addition, weak selection was detected for frequent micro-habitat-specific QTLs that shape single traits. In this population, A. thaliana probably responded to local warming and increased competition, in part mediated by central regulators of flowering time. This genetic architecture, which includes both synergistic pleiotropic QTLs and distinct QTLs within particular micro-habitats, enables rapid phenotypic evolution while still maintaining genetic variation in wild populations.


Assuntos
Adaptação Biológica , Arabidopsis/genética , Evolução Biológica , Pleiotropia Genética , Polimorfismo de Nucleotídeo Único , Estudo de Associação Genômica Ampla
12.
Genetica ; 145(6): 481-489, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28932936

RESUMO

Phelipanche ramosa is a major root-holoparasitic damaging weed characterized by a broad host range, including numerous Fabaceae species. In France, the agricultural threat posed by P. ramosa has increased over two decades due to the appearance of a genetically differentiated pathovar presenting a clear host specificity for oilseed rape. The new pathovar has led to a massive expansion of P. ramosa in oilseed rape fields. The germination rate of P. ramosa seeds is currently known to vary among P. ramosa pathovars and host species. However, only a few studies have investigated whether phylogenetic relatedness among potential host species is a predictor of the ability of these species to induce the seed germination of parasitic weeds by testing for phylogenetic signal. We focused on a set of 12 Fabaceae species and we assessed the rate of induction of seed germination by these species for two pathovars based on in vitro co-cultivation experiments. All Fabaceae species tested induced the germination of P. ramosa seeds. The germination rate of P. ramosa seeds varied between Fabaceae species and tribes studied, while pathovars appeared non-influential. Considering oilseed rape as a reference species, we also highlighted a significant phylogenetic signal. Phylogenetically related species therefore showed more similar rates of induction of seed germination than species drawn at random from a phylogenetic tree. In in vitro conditions, only Lotus corniculatus induced a significantly higher germination rate than oilseed rape, and could potentially be used as a catch crop after confirmation of these results under field conditions.


Assuntos
Fabaceae/parasitologia , Germinação , Orobanchaceae/fisiologia , Sementes/crescimento & desenvolvimento , Fabaceae/classificação , Fabaceae/fisiologia , Orobanchaceae/crescimento & desenvolvimento , Filogenia , Plantas Daninhas , Especificidade da Espécie
13.
PLoS One ; 12(5): e0176197, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28489870

RESUMO

Ambrosia artemisiifolia L., (common ragweed), is an annual invasive and highly troublesome plant species originating from North America that has become widespread across Europe. New sets of genomic and expressed sequence tag (EST) based simple sequence repeats (SSRs) markers were developed in this species using three approaches. After validation, 13 genomic SSRs and 13 EST-SSRs were retained and used to characterize the genetic diversity and population genetic structure of Ambrosia artemisiifolia populations from the native (North America) and invasive (Europe) ranges of the species. Analysing the mating system based on maternal families did not reveal any departure from complete allogamy and excess homozygosity was mostly due the presence of null alleles. High genetic diversity and patterns of genetic structure in Europe suggest two main introduction events followed by secondary colonization events. Cross-species transferability of the newly developed markers to other invasive species of the Ambrosia genus was assessed. Sixty-five percent and 75% of markers, respectively, were transferable from A. artemisiifolia to Ambrosia psilostachya and Ambrosia tenuifolia. 40% were transferable to Ambrosia trifida, this latter species being seemingly more phylogenetically distantly related to A. artemisiifolia than the former two.


Assuntos
Ambrosia/genética , Etiquetas de Sequências Expressas , Marcadores Genéticos , Variação Genética , Espécies Introduzidas , Europa (Continente) , América do Norte
14.
Pest Manag Sci ; 73(10): 1994-1999, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28485118

RESUMO

It is suggested that selection for late germinating seed cohorts is significantly associated with herbicide resistance in some cropping systems. In turn, it is conceivable that rotating herbicide modes of action selects for populations with mutations for increased secondary dormancy, thus partially overcoming the delaying effect of rotation on resistance evolution. Modified seed dormancy could affect management strategies - like herbicide rotation - that are used to prevent or control herbicide resistance. Here, we review the literature for data on seed dormancy and germination dynamics of herbicide-resistant versus susceptible plants. Few studies use plant material with similar genetic backgrounds, so there are few really comparative data. Increased dormancy and delayed germination may co-occur with resistance to ACCase inhibitors, but there is no clear-cut link with resistance to other herbicide classes. Population shifts are due in part to pleiotropic effects of the resistance genes, but interaction with the cropping system is also possible. We provide an example of a model simulation that accounts for genetic diversity in the dormancy trait, and subsequent consequences for various cropping systems. We strongly recommend adding more accurate and detailed mechanistic modelling to the current tools used today to predict the efficiency of prevention and management of herbicide resistance. These models should be validated through long-term experimental designs including mono-herbicide versus chemical rotation in the field. © 2017 Society of Chemical Industry.


Assuntos
Germinação/efeitos dos fármacos , Resistência a Herbicidas , Herbicidas/farmacologia , Dormência de Plantas/efeitos dos fármacos , Plantas Daninhas/efeitos dos fármacos , Controle de Plantas Daninhas , Evolução Biológica , Produtos Agrícolas/efeitos dos fármacos , Produtos Agrícolas/genética , Produtos Agrícolas/crescimento & desenvolvimento , Resistência a Medicamentos , Plantas Daninhas/genética , Plantas Daninhas/crescimento & desenvolvimento
15.
Environ Sci Pollut Res Int ; 24(14): 13121-13135, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28386883

RESUMO

Overreliance on the same herbicide mode of action leads to the spread of resistant weeds, which cancels the advantages of herbicide-tolerant (HT) crops. Here, the objective was to quantify, with simulations, the impact of glyphosate-resistant (GR) weeds on crop production and weed-related wild biodiversity in HT maize-based cropping systems differing in terms of management practices. We (1) simulated current conventional and probable HT cropping systems in two European regions, Aquitaine and Catalonia, with the weed dynamics model FLORSYS; (2) quantified how much the presence of GR weeds contributed to weed impacts on crop production and biodiversity; (3) determined the effect of cultural practices on the impact of GR weeds and (4) identified which species traits most influence weed-impact indicators. The simulation study showed that during the analysed 28 years, the advent of glyphosate resistance had little effect on plant biodiversity. Glyphosate-susceptible populations and species were replaced by GR ones. Including GR weeds only affected functional biodiversity (food offer for birds, bees and carabids) and weed harmfulness when weed effect was initially low; when weed effect was initially high, including GR weeds had little effect. The GR effect also depended on cultural practices, e.g. GR weeds were most detrimental for species equitability when maize was sown late. Species traits most harmful for crop production and most beneficial for biodiversity were identified, using RLQ analyses. None of the species presenting these traits belonged to a family for which glyphosate resistance was reported. An advice table was built; the effects of cultural practices on crop production and biodiversity were synthesized, explained, quantified and ranked, and the optimal choices for each management technique were identified.


Assuntos
Controle de Plantas Daninhas , Zea mays/efeitos dos fármacos , Agricultura , Animais , Biodiversidade , Produção Agrícola , Produtos Agrícolas/efeitos dos fármacos , Glicina/análogos & derivados , Glicina/farmacologia , Resistência a Herbicidas , Herbicidas/farmacologia , Plantas Geneticamente Modificadas/efeitos dos fármacos , Glifosato
16.
Environ Sci Pollut Res Int ; 24(12): 11582-11600, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28324251

RESUMO

Herbicide-tolerant (HT) crops such as those tolerant to glyphosate simplify weed management and make it more efficient, at least at short-term. Overreliance on the same herbicide though leads to the spread of resistant weeds. Here, the objective was to evaluate, with simulations, the impact on the advent of glyphosate resistance in weeds of modifications in agricultural practises resulting from introducing HT maize into cropping systems. First, we included a single-gene herbicide resistance submodel in the existing multispecific FLORSYS model. Then, we (1) simulated current conventional and probable HT cropping systems in two European regions, Aquitaine and Catalonia, (2) compared these systems in terms of glyphosate resistance, (3) identified pertinent cultural practises influencing glyphosate resistance, and (4) investigated correlations between cultural practises and species traits, using RLQ analyses. The simulation study showed that, during the analysed 28 years, (1) glyphosate spraying only results in glyphosate resistance in weeds when combined with other cultural factors favouring weed infestation, particularly no till; (2) pre-sowing glyphosate applications select more for herbicide resistance than post-sowing applications on HT crops; and (3) glyphosate spraying selects more for species traits avoiding exposure to the herbicide (e.g. delayed early growth, small leaf area) or compensating for fitness costs (e.g. high harvest index) than for actual resistance to glyphosate, (4) actual resistance is most frequent in species that do not avoid glyphosate, either via plant size or timing, and/or in less competitive species, (5) in case of efficient weed control measures, actual resistance proliferates best in outcrossing species. An advice table was built, with the quantitative, synthetic ranking of the crop management effects in terms of glyphosate-resistance management, identifying the optimal choices for each management technique.


Assuntos
Agricultura/métodos , Glicina/análogos & derivados , Resistência a Herbicidas , Plantas Daninhas/crescimento & desenvolvimento , Zea mays/crescimento & desenvolvimento , Produtos Agrícolas/crescimento & desenvolvimento , Herbicidas/farmacologia , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Glifosato
17.
Pest Manag Sci ; 72(10): 1910-25, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26751723

RESUMO

BACKGROUND: Managing herbicide-resistant weeds is becoming increasingly difficult. Here we adapted the weed dynamics model AlomySys to account for experimentally measured fitness costs linked to mutants of target-site resistance to acetyl-coenzyme A carboxylase (ACCase)-inhibiting herbicides in Alopecurus myosuroides. We ran simulations to test how effectively cultural practices manage resistance. RESULTS: Simulations of an oilseed rape/winter wheat/winter barley rotation showed that, when replacing one of the seven applied herbicides with an ACCase-inhibiting one, resistant mutants exceeded 1 plant m(-2) , with a probability of 40%, after an average of 18 years. This threshold was always exceeded when three or four ACCase-inhibiting herbicides were used, after an average of 8 and 6 years respectively. With reduced herbicide rates or suboptimal spraying conditions, resistance occurred 1-3 years earlier in 50% of simulations. Adding spring pea to the rotation or yearly mouldboard ploughing delayed resistance indefinitely in 90 and 60% of simulations respectively. Ploughing also modified the genetic composition of the resistant population by selecting a previously rare mutant that presented improved pre-emergent growth. The prevalence of the mutations was influenced more by their associated fitness cost or benefit than by the number of ACCase-inhibiting herbicides to which they conferred resistance. CONCLUSION: Simulations allowed us to rank weed management practices and suggest that pleiotropic effects are extremely important for understanding the frequency of herbicide resistance in the population. © 2016 Society of Chemical Industry.


Assuntos
Acetil-CoA Carboxilase/genética , Resistência a Herbicidas/genética , Herbicidas , Poaceae/genética , Simulação por Computador , Proteção de Cultivos/métodos , Produtos Agrícolas , Mutação
18.
Evolution ; 69(1): 271-8, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25255698

RESUMO

This article investigates the possible existence of mechanisms counterbalancing the negative pleiotropic effects on development and reproduction that are conferred by alleles responsible for herbicide resistance in the weed Alopecurus myosuroides. We considered three herbicide-resistant, mutant acetyl-coenzyme A carboxylase (ACCase) alleles, Leu1781, Asn2041, and Gly2078, found in eight resistant populations. Of these, Gly2078 is the only allele with a known fitness cost. We compared plants homozygous for wild-type ACCase alleles that were siblings of plants carrying a given mutant resistant ACCase allele with plants from three populations where resistance did not evolve. In each of two series of experiments, we measured germination dynamics, seedling vigor, plant height, vegetative biomass, and seed production. The wild-type siblings of plants carrying Gly2078 performed better in the field, on average, than wild-type plants that were sibling of plants carrying other mutant ACCase alleles, and particularly those carrying Leu1781. We propose that rapid evolution of the genetic background of plants from the populations where the Gly2078 allele originally arose could partially counterbalance Gly2078 fitness cost, enhancing the spread of the resistant genotypes.


Assuntos
Resistência a Medicamentos/genética , Evolução Molecular , Aptidão Genética , Herbicidas/farmacologia , Poaceae/genética , Acetil-CoA Carboxilase/genética , Alelos , Mutação , Proteínas de Plantas/genética , Poaceae/efeitos dos fármacos , Poaceae/enzimologia
19.
Int J Mol Sci ; 15(1): 994-1002, 2014 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-24419096

RESUMO

Phelipanche ramosa is a parasitic plant that infects numerous crops worldwide. In Western Europe it recently expanded to a new host crop, oilseed rape, in which it can cause severe yield losses. We developed 13 microsatellite markers for P. ramosa using next-generation 454 sequencing data. The polymorphism at each locus was assessed in a sample of 96 individuals collected in France within 6 fields cultivated with tobacco, hemp or oilseed rape. Two loci were monomorphic. At the other 11 loci, the number of alleles and the expected heterozygosity ranged from 3 to 6 and from 0.31 to 0.60, respectively. Genetic diversity within each cultivated field was very low. The host crop from which individuals were collected was the key factor structuring genetic variation. Individuals collected on oilseed rape were strongly differentiated from individuals collected on hemp or tobacco, which suggests that P. ramosa infecting oilseed rape forms a genetically diverged race. The microsatellites we developed will be useful for population genetics studies and for elucidating host-associated genetic divergence in P. ramosa.


Assuntos
Especiação Genética , Repetições de Microssatélites , Orobanche/genética , Produtos Agrícolas , Marcadores Genéticos , Especificidade de Hospedeiro/genética
20.
Trends Genet ; 29(11): 649-58, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23830583

RESUMO

Resistance to herbicides in arable weeds is increasing rapidly worldwide and threatening global food security. Resistance has now been reported to all major herbicide modes of action despite the development of resistance management strategies in the 1990s. We review here recent advances in understanding the genetic bases and evolutionary drivers of herbicide resistance that highlight the complex nature of selection for this adaptive trait. Whereas early studied cases of resistance were highly herbicide-specific and largely under monogenic control, cases of greatest concern today generally involve resistance to multiple modes of action, are under polygenic control, and are derived from pre-existing stress response pathways. Although 'omics' approaches should enable unraveling the genetic bases of complex resistances, the appearance, selection, and spread of herbicide resistance in weed populations can only be fully elucidated by focusing on evolutionary dynamics and implementing integrative modeling efforts.


Assuntos
Evolução Molecular , Resistência a Herbicidas/genética , Plantas Daninhas/efeitos dos fármacos , Plantas Daninhas/genética , Análise Custo-Benefício , Loci Gênicos , Herbicidas/farmacologia , Mutação , Plantas Daninhas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...